## Course/Subject: : Math Comprehensive Units

Grade Level: 2
Textbook(s)/Materials Used: Ready Pennsylvania Math Instruction, Practice Problem Solving, Assessment, i-Ready Diagnostic \& Instruction ISBN 978-1-4957-3538-7 • 2018-Curriculum Associates

| Month(s): August - September - October |
| :--- |
| Operations and Algebraic Thinking |
| Big Idea |





Month(s): November - December - January
Unit 2

## Numbers and Operations in Base Ten

| Big Idea | Standard | Eligible Content | Essential Questions \& Lesson Essential Question | Concepts | Vocabulary | Competencies |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mathematical relationships among numbers can be represented, compared, and communicated. <br> Mathematical relationships can be represented as expressions, equations and inequalities in mathematical situations. <br> Numerical quantities, calculations, and measurements can be estimated or analyzed by using appropriate strategies and tools. <br> Patterns exhibit relationships that can be extended, described, and generalized. <br> Mathematical relationships among numbers can be represented, | CC.2.1.2.B. 1 <br> CC.2.1.2.B. 2 <br> CC.2.1.2.B. 3 <br> Lesson 7 <br> CC.2.1.2.B. 3 <br> Use place-value understanding and properties of operations to add and subtract within 1000. <br> Lesson 8 <br> CC.2.1.2.B. 3 <br> Use place-value understanding and properties of operations to add and subtract within 1000. <br> Lesson 9 CC.2.1.2.B. 3 Use place-value understanding and properties of operations to add and subtract within 1000. <br> CC.2.2.2.A. 1 Represent and solve problems involving addition |  | How is mathematics used to quantify, compare, represent, and model numbers? <br> How can mathematics support effective communication? <br> How are relationships represented mathematically? <br> What does it mean to estimate or analyze numerical quantities? <br> What makes a tool and/or strategy appropriate for a given task? <br> Lesson 7 <br> Content Objectives <br> Break apart two-digit numbers as a place-value strategy for adding. <br> Recognize that in adding, tens are added to tens and ones to ones. <br> Determine when regrouping a ten is necessary and carry out the regrouping to find a sum. Language Objectives <br> Record sums found by modeling addition with base ten blocks. | Place value <br> Addition and Subtraction | Lesson 7 <br> Regroup - to compose or decompose ones, tens, or hundreds. <br> For example, 10 ones can be regrouped as 1 ten, or 1 hundred can be regrouped as 10 tens. <br> Sum - the result of addition. <br> Lesson 11 <br> - digit any one of the ten symbols used to write numbers: 0,1 , 2, 3, 4, 5, 6, 7, 8, 9. <br> Review the following key term. <br> - place value the value assigned to a digit based on its position in a number. <br> For example, the 2 in 324 is in the tens | Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones. <br> Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons. <br> Count within 1000; skip-count by 5 s , 10s, and 100s. <br> Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. <br> Add up to four twodigit numbers using strategies based on place value and properties of operations. |


| compared, and communicated. | and subtraction within 100. <br> Lesson 10 <br> C.2.1.2.B. 1 Use place-value concepts to represent amounts of tens and ones and to compare three digit numbers. CC.2.1.2.B. 2 <br> Use place-value concepts to read, write, and skip count to 1000. <br> Lesson 11 CC.2.1.2.B. 2 Use place-value concepts to read, write, and skip count to 1000. <br> Lesson 12 CC.2.1.2.B. 1 Use place-value concepts to represent amounts of tens and ones and to compare three digit numbers. <br> Lesson 13 <br> CC.2.1.2.B. 3 <br> Use place-value |  | Draw an open number line to model adding two-digit numbers. <br> Make a quick drawing to model adding two-digit numbers. <br> Write an addition problem to solve a word problem involving two-digit Addition. <br> Lesson 8 <br> Content Objectives <br> Decompose a ten as a strategy for subtracting. <br> Recognize that addition can be used to solve a subtraction problem. <br> Evaluate mental strategies for subtracting a number from a two-digit number. <br> Language Objectives Orally describe how to add up to solve subtraction problems. <br> Draw an open number line to model subtracting two-digit numbers. <br> Write a subtraction problem to solve a word problem. <br> Lesson 9 <br> Content Objectives <br> Analyze word problems to determine the operation needed to solve them. |  | place and has a value of 2 tens or twenty. <br> - Hundreds <br> - Tens <br> - Ones <br> Lesson 12 <br> There is no new vocabulary. Review the following key terms. compare - to decide if one number is greater than, less than, or equal to another number. <br> greater than symbol (>) a symbol used to compare two numbers when the first is greater than the second. <br> less than symbol (<) a symbol used to compare two numbers when the first is less than the second. | Add and subtract within 1000. <br> Understand that in adding or subtracting threedigit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds. <br> Explain why addition and subtraction strategies work, using place value and the properties of operations. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |



|  |  |  | Tell how many tens are in 100 and in 200. <br> Lesson 11 <br> Content Objectives Identify the place value of each digit in a three-digit number. <br> Model three-digit numbers. <br> Interpret a model and write the number value. <br> Language Objectives Read aloud three-digit numbers. <br> Write three-digit numbers in expanded form. <br> Write a three-digit number shown with base ten blocks. <br> Lesson 12 <br> Content Objectives <br> Evaluate models of three-digit numbers to determine whether numbers are greater than, less than, or equal to each other. <br> Express equalities and inequalities using proper notation. <br> Solve problems involving inequalities and justify solutions. <br> Language Objectives |  | regroup - to compose or decompose ones, tens, or hundreds. For example, 10 ones can be regrouped as 1 ten, or 1 hundred can be regrouped as 10 tens. <br> difference - the result of subtraction. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  |  | Tell which of two three-digit <br> numbers is greater and which <br> is lesser. <br> Write inequalities to compare <br> three-digit numbers using and <br> symbols. <br> Listen to the ideas of others <br> and ask questions to clarify. <br> Lesson 13 <br> Content Objectives <br> Break apart three-digit <br> numbers as a place-value <br> strategy for adding. <br> Recognize that in adding, <br> hundreds are added to <br> hundreds, tens to tens, and <br> ones to ones. <br> Determine when regrouping a <br> hundred or a ten is necessary, <br> and carry out the regrouping to <br> find the sum. <br> Language Objectives <br> Write two numbers in a place <br> value chart to find their sum. <br> Write two numbers in <br> expanded notation to find their <br> sum. <br> Record partial sums as a step <br> toward finding the sum of two <br> numbers. <br> Lesson 14 <br> Content Objectives |  |
| :--- | :--- | :--- | :--- | :--- |


|  |  | Determine when regrouping a <br> ten and/or a hundred is <br> necessary to subtract, and <br> carry out the regrouping <br> to find the difference. <br> Recognize that in subtracting, <br> hundreds are subtracted from <br> hundreds, tens from tens, and <br> ones from ones. <br> Explore subtraction as a <br> process of taking away or <br> adding up. <br> Language Objectives <br> Write two numbers in a place- <br> value chart to find their <br> difference. <br> Write two numbers in <br> expanded notation to find their <br> difference. <br> Record the steps for adding up <br> to subtract on an open number <br> line. <br> Compare two approaches to <br> subtraction to describe how <br> they are alike and different. <br> Lesson 15 <br> Content Objectives <br> Break apart three or more two- <br> digit numbers as a place-value <br> strategy for than two numbers. <br> Apply the commutative and <br> associative properties of <br> addition. |  |
| :--- | :--- | :--- | :--- | :--- |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Measurement attributes can be quantified, and estimated using customary and noncustomary units of measure. <br> Numerical quantities, calculations, and measurements can be estimated or analyzed by using appropriate strategies and tools. <br> Numerical quantities, calculations, and measurements can be estimated or analyzed by using appropriate strategies and tools. | estimate lengths in standard units using appropriate tools. <br> Lesson 17 <br> CC.2.4.2.A. 1 <br> Measure and estimate lengths in standard units using appropriate tools. <br> Lesson 18 <br> CC.2.4.2.A. 1 <br> Measure and estimate lengths in standard units using appropriate tools. <br> Lesson 19 <br> CC.2.4.2.A. 1 <br> Measure and estimate lengths in standard units using appropriate tools. <br> Lesson 20 <br> CC.2.4.2.A. 1 <br> Measure and estimate lengths in standard units using <br> appropriate tools. |  | Why does "what" we measure influence "how" we measure? <br> In what ways are the mathematical attributes of objects or processes measured calculated and/or interpreted? <br> How precise do measurements and calculations need to be? <br> What does it mean to estimate or analyze numerical quantities? <br> When is it is appropriate to estimate versus calculate? <br> What makes a tool and/or strategy appropriate for a given task? <br> What does it mean to estimate or analyze numerical quantities? <br> What makes a tool and/or strategy appropriate for a given task? <br> How can data be organized and represented to provide insight into the relationship between quantities? <br> How does the type of data influence the choice of display? | non-standard unit such as a shoe-length. <br> inch - the smallest unit of length in the U.S. customary system. A quarter is about 1 inch across. 12 inches is equivalent to 1 foot. <br> centimeter - a unit of length in the metric system. Your little finger is about 1 centimeter across. 100 centimeters is equivalent to 1 meter. <br> Review the following key terms. <br> length - a measurement that tells the distance from one point to another. <br> measure - to determine the | different-sized units then discuss the measurement made with the smaller unit is more than the measurement made with the larger unit and vice versa. <br> Estimate lengths using units of inches, feet, centimeters, and meters. <br> Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit. <br> Make a line plot to show <br> measurement data of the lengths of several objects to the nearest wholenumber unit. <br> Draw a picture graph and a bar graph (with singleunit scale) to |
| :---: | :---: | :---: | :---: | :---: | :---: |




|  |  |  | Understand the relationship between centimeters and meters. <br> Explore how the number of units in a measurement is related to the size of the units used. <br> Language Objectives Compare given lengths measured in different units. <br> Predict whether a given object would be more inches in length or more feet in length. <br> Describe the relationship between centimeters and meters. <br> Lesson 19 <br> Content Objectives <br> Estimate lengths in inches, centimeters, feet, and meters. <br> Use benchmark objects when estimating. <br> Language Objectives Define the key vocabulary term estimate when discussing measurement with a partner. <br> Justify conclusions and communicate conclusions to others. <br> Lesson 20 |  | is equal to 12 inches. <br> yard - a unit of length in the U.S. customary system. 1 yard is equal to 3 feet or 36 inches. <br> centimeter - a unit of length in the metric system. Your little finger is about 1 centimeter across. 100 centimeters is equivalent to 1 meter. <br> meter - a unit of length in the metric system. 1 meter is equal to 100 centimeters. <br> Lesson 19 to estimate - to give an approximate number or answer based on mathematical thinking. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  |  |  | Content Objectives Compare the lengths of objects by determining which measure is greater than or less than the other. <br> Use addition and subtraction to compare lengths, finding how much greater or less the measure of one object is than the other. <br> Language Objectives Tell how to compare the lengths of two objects that are not lined up next to each other. <br> Record the lengths of two objects and subtract to tell how much longer or shorter one is than the other. <br> Lesson 21 <br> Content Objectives Use addition and subtraction to solve problems involving lengths. <br> Recognize the importance of working within a single unit when adding or subtracting lengths. <br> Interpret and apply models that represent measurement problems involving addition and subtraction. <br> Language Objectives |  | an estimate - a close guess made using mathematical thinking. <br> Lesson 22 data - a set of collected information; often numerical information such as a list of measurements <br> line plot-a data display that shows the frequencies of the data as marks above a number line. <br> Lesson 23 data - a set of collected information; often numerical information such as a list of measurements <br> picture graph a data display in which pictures are used to represent the |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |



|  |  |  | Compare data in a tally chart, table, picture graph, and bar graph. <br> Interpret graphs by reading and comparing the data shown in the graph. <br> Complete a picture graph and bar graph. <br> Create a bar graph from a given set of data. <br> Language Objectives Compare a bar graph and a picture graph for the same data. <br> Use key mathematical vocabulary terms picture graph, bar graph, and data in discussions. <br> Lesson 24 <br> Content Objectives <br> Read time to the nearest 5minute interval. <br> Write time using proper notation. <br> Show time on an analog clock using proper hour-hand and minute-hand placement. <br> Determine when a digital clock should read am or pm. <br> Language Objectives |  | U.S. equal to 100 cents. <br> Lesson 24 am - the time from midnight until before noon. <br> pm - the time from noon until before midnight. <br> Review the following key terms <br> hour - a unit of time equal to 60 minutes. <br> minute - a unit of time equal to 60 seconds. <br> hour hand - the shorter indicator (or hand) on an analog clock, which shows the hours. <br> minute hand the longer indicator (or hand) on an analog clock, which shows the minutes. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  |  |  | Skip count by 5s to read time <br> on an analog clock. <br> Use the terms am and pm <br> correctly in discussions. <br> Lesson 25 <br> Content Objectives <br> Recognize and name the coins <br> penny, nickel, dime, and <br> quarter. <br> Know the value of coins and <br> paper denominations. <br> Count the amount of money <br> represented by a set of coins <br> or bills. <br> Language Objectives <br> Write the value of a set of <br> coins. <br> Write the value of a set of bills. <br> a clock that <br> uses hour and <br> minute hand <br> positions to <br> show time. <br> digital clock - a <br> clock that uses <br> digits to display <br> the time. |
| :--- | :--- | :--- | :--- | :--- | :--- |


| described, and generalized. <br> Geometric relationships can be described, analyzed, and classified based on spatial reasoning and/or visualization. <br> Patterns exhibit relationships that can be extended, described, and generalized. <br> Geometric relationships can be described, analyzed, and classified based on spatial reasoning and/or visualization. | Lesson 26 <br> CC.2.3.2.A. 1 <br> Analyze and draw two- and three- <br> dimensional shapes having specified attributes. <br> Lesson 27 <br> CC.2.3.2.A. 1 <br> Analyze and draw two- and three- <br> dimensional shapes having specified attributes. <br> Lesson 28 CC.2.3.2.A. 2 Use the understanding of fractions to partition shapes into halves, quarters, and thirds. |  | How can recognizing repetition or regularity assist in solving problems more efficiently? <br> How are spatial relationships, including shape and dimension, used to draw, construct, model, and represent real situations or solve problems? <br> How can patterns be used to describe relationships in mathematical situations? <br> How can recognizing repetition or regularity assist in solving problems more efficiently? <br> How can the application of the attributes of geometric shapes support mathematical reasoning and problem solving? <br> How can geometric properties and theorems be used to describe, model, and analyze situations? <br> Lesson 26 <br> Content Objectives Identify triangles, quadrilaterals, pentagons, and hexagons based on the number of sides and angles they have. <br> Recognize that one shape can be formed from a composite of other shapes. |  | a two- <br> dimensional shape. <br> angle - one of the corners of a shape where two sides meet. <br> triangle - a twodimensional shape with three straight sides and three angles. <br> quadrilateral a twodimensional closed shape with exactly four sides and four angles. <br> rectangle - a quadrilateral with four square corners. <br> Opposite sides of a rectangle are the same length. <br> rhombus - a quadrilateral with all sides the same length. | triangles, quadrilaterals, pentagons, hexagons, and cubes. <br> Partition circles and rectangles into two, three, or four equal shares, recognize that equal shares of identical wholes need not have the same shape. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  |  |  | Distinguish among triangles, quadrilaterals, pentagons, and hexagons based on their attributes. <br> Identify spheres, cubes, cones, cylinders, and pyramids based on the number of faces, edges, and vertices they have. <br> Draw a shape based on specific attributes. <br> Language Objectives Write the names of shapes based on the number of sides and angles. <br> Draw shapes given a set of attributes. <br> Draw lines in a shape to show different ways it can be made from other shapes. <br> Write the number of faces, edges, and vertices of a shape based on drawings. <br> Write the names of shapes based on key attributes. <br> Lesson 27 <br> Content Objectives <br> Analyze a tiling as an array of squares with no gaps or overlaps. |  | pentagon-a two- <br> dimensional closed shape with exactly five sides and five angles. <br> hexagon- a two- <br> dimensional shape with exactly six sides and six angles. <br> sphere - a solid shape like a ball. <br> cylinder - a solid shape like a can. <br> cube - a solid shape like a box, with 6 square surfaces (faces) and all edges of equal length. <br> cone - a solid shape that slopes from a circular base to a point. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |




